Interst. 2: Computer Math., 1983, Vol. 14, pp. 191-195 0020-7160/83/1402-0191 \$18.50/0 q* Gordon and Brench Science Publishers Inc., 1983 Printed in Great Britain

A New Family of Higher Order Methods for Solving Equations

B. NETA

Department of Mathematics, Texas Tech. University, Box 4319, Lubbock, Texas 79409, U.S.A.

(Received February, 1983)

Neta's three step sixth order family of methods for solving nonlinear equations require 3 function and 1 derivative evaluation per iteration. Using exactly the same information another three step method can be obtained with convergence rate 10.81525 which is much better than the sixth order.

KEY WORDS: Nonlinear equations, rate of convergence, function zeros.

C.R. CATEGORY: 5.15.

INTRODUCTION

Neta [1] developed a sixth order family of three-step methods for solving the nonlinear equation f(x)=0. The method requires three evaluations of the function and one evaluation of the derivative per iteration. Given x_n , evaluate w_n by Newton's method

$$w_n = x_n - \frac{f(x_n)}{f'(x_n)} \tag{1}$$

then evaluate z_n and x_{n+1} by a modified Newton

$$z_n = w_n - \frac{f(w_n)}{f'(x_n)} \frac{f(x_n) + Af(w_n)}{f(x_n) + (A-2)f(w_n)}$$
 (2)

$$x_{n+1} = z_n - \frac{f(z_n)}{f'(x_n)} \frac{f'(x_n) - f(w_n)}{f(x_n) - 3f(w_n)}.$$

The error term is given by

$$\varepsilon_{n+1} = \frac{1}{144} [2F_3^2 F_2 - 3(2A+1)F_2^3 F_3] \varepsilon_n^6 + \cdots,$$

where

$$F_i = \frac{f^{(i)}(\xi)}{f'(\xi)},$$

$$\varepsilon_n = \varepsilon(x_n) = x_n - \xi$$
.

The parameter A can be chosen equal to -1 so that the n in the last two steps is the same, or so as to minimize t constant.

In this note we construct a three step method using t information and having order 10.81525.

CONSTRUCTION OF THE METHOD

Note that in the last step (3) one uses the values of f at 3 pc w_n , z_n and the values of the derivative at x_n . Suppose construct the first two steps in a similar fashion, namely, value of f at 3 previously computed points and the value only one previous point. Let w_n be computed based on the v f at x_n , z_{n-1} , w_{n-1} and the value of f' at x_n . Let z_n be considered on the values of f at w_n , v_n ,

We use inverse interpolation to compute w_n . Let

$$R(f(x)) = a + b(f(x) - f(x_n)) + c(f(x) - f(x_n))^2 + d(f(x) - f(x_n))^3$$

Luid

be a polynomial of degree three satisfying

$$x_n = R(f(x_n)), \tag{8a}$$

$$\frac{1}{f'(x_n)} = R'(f(x_n)), \tag{8b}$$

$$w_{n-1} = R(f(w_{n-1})),$$
 (8c)

$$z_{n-1} = R(f(z_{n-1})).$$
 (8d)

It is easy to see from (8a) and (8b) that

$$a = x_n,$$

$$b = \frac{1}{f'(x_n)}.$$
(9)

Thus, if we use the notations

$$\sigma = \sigma_n - x_n,$$

$$F_{\sigma} = f(\sigma_n) - f(x_n),$$

$$\phi_{\sigma} = \frac{\sigma}{F_{\sigma}^2} - \frac{1}{F_{\sigma}f'(x_n)},$$
(10)

for $\sigma_n = w_{n-1}$, z_{n-1} , then (8c) and (8d) will yield

$$c + dF_{w} = \phi_{w},$$

$$c + dF_{s} = \phi_{s}.$$
(11)

Solving these equations we have

$$d = \frac{\phi_w - \phi_z}{F_w - F_z},$$

$$c = \frac{F_w \phi_z + \phi_w F_z}{F_w - F_z}.$$
(12)

Thus, after rearrangement,

$$w_n = R(0) = x_n - \frac{f(x_n)}{f'(x_n)} + (f(w_{n-1})\phi_z - f(z_{n-1})\phi_w)$$

$$\times \frac{f^2(x_n)}{f(w_{n-1}) - f(z_{n-1})},$$

where

$$\phi_{w} = \frac{w_{n-1} - x_{n}}{(f(w_{n-1}) - f(x_{n}))^{2}} - \frac{1}{(f(w_{n-1}) - f(x_{n}))f'(x_{n})},$$

$$\phi_{z} = \frac{z_{n-1} - x_{n}}{(f(z_{n-1}) - f(x_{n}))^{2}} - \frac{1}{(f(z_{n-1}) - f(x_{n}))f'(x_{n})}.$$

In a similar fashion we obtain z_n . The only difference is that will be replaced by w_n

$$z_n = x_n - \frac{f(x_n)}{f'(x_n)} + (f(w_n)\phi_z - f(z_{n-1})\psi_w) \frac{f^2(x_n)}{f(w_n) - f(z_{n-1})},$$

where

$$\psi_{w} = \frac{w_{n} - x_{n}}{(f(w_{n}) - f(x_{n}))^{2} - \frac{1}{(f(w_{n}) - f(x_{n}))f'(x_{n})}}.$$

Similarly for x_{n+1}

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} + (f(w_n)\psi_z - f(z_n)\psi_w) \frac{f^2(x_n)}{f(w_n) - f(z_n)},$$

where

$$\psi_z = \frac{z_n - x_n}{(f(z_n) - f(x_n))^2} - \frac{1}{(f(z_n) - f(x_n))f'(x_n)}.$$

We now show that the method (13), (15), (17) is of 10.81525. To this end, we shall use Herzberger's [2] matrix m

according to which the order of a single step k-point method $x_n = G(x_{n-1}, x_{n-2}, ..., x_{n-k})$ is the spectral radius of the matrix M with elements $m_{1,1} =$ amount of information required at point x_{n-1} , l=1,2,...,k, $m_{l,l-1}=1$, l=2,3,...,k, and $m_{l,l}=0$ otherwise. The order of an s-step method $l=G_1 \circ G_2 \circ \cdots \circ G_s$ is the spectral radius of the matrix $M_1 M_2 ... M_s$. In our case, s=3, k=3, and

$$M = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 8 & 5 & 6 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}. \quad (19)$$

The eigenvalues of M are the roots of the cubic polynomial

$$-\lambda^3 + 12\lambda^2 - 13\lambda + 2,\tag{20}$$

which are 1, 10.81525, +0.18475.

Thus, the spectral radius of M is 10.81525 which proves the order of the method.

References

- B. Neta, A sixth-order family of methods for nonlinear equations, Intern. J. Computer Math., Sec. B, 7 (1979), 157-161.
- [2] J. Herzberger, Über Matriadarstellungen für Iterationsverfahren bei nichtlinearen Gleichungen, Computing 12 (1974), 215-222.